- Title
- Sequential azacitidine and carboplatin induces immune activation in platinum-resistant high-grade serous ovarian cancer cell lines and primes for checkpoint inhibitor immunotherapy
- Creator
- Wong-Brown, Michelle W.; van der Westhuizen, Andre; Bowden, Nikola A.
- Relation
- BMC Cancer Vol. 22, no. 100
- Publisher Link
- http://dx.doi.org/10.1186/s12885-022-09197-w
- Publisher
- BioMed Central (BMC)
- Resource Type
- journal article
- Date
- 2022
- Description
- Background: Platinum chemoresistance results in high-grade serous ovarian cancer (HGSOC) disease recurrence. Recent treatment advances using checkpoint inhibitor immunotherapy has not benefited platinum-resistant HGSOC. In ovarian cancer, DNA methyltransferase inhibitors (DNMTi) block methylation and allow expression of silenced genes, primarily affecting immune reactivation pathways. We aimed to determine the epigenome and transcriptome response to sequential treatment with DNMTi and carboplatin in HGSOC. Methods: In vitro studies with azacitidine or carboplatin alone and in sequential combination. Response was determined by cell growth, death and apoptosis. Genome-wide DNA methylation levels and transcript expression were compared between untreated and azacitidine and carboplatin sequential treatment. Results: Sequential azacitidine and carboplatin significantly slowed cell growth in 50% of cell lines compared to carboplatin alone. The combination resulted in significantly higher cell death in 25% of cell lines, and significantly higher cell apoptosis in 37.5% of cell lines, than carboplatin alone. Pathway analysis of upregulated transcripts showed that the majority of changes were in immune-related pathways, including those regulating response to checkpoint inhibitors. Conclusions: Sequential azacitidine and carboplatin treatment slows cell growth, and demethylate and upregulate pathways involved in immune response, suggesting that this combination may be used to increase HGSOC response to immune checkpoint inhibitors in platinum-resistant patients who have exhausted all currently-approved avenues of treatment.
- Subject
- ovarian cancer; platinum resistance; methylation; azacitidine; carboplatin; immune checkpoint inhibition; SDG 3; Sustainable Development Goals
- Identifier
- http://hdl.handle.net/1959.13/1469643
- Identifier
- uon:48290
- Identifier
- ISSN:1471-2407
- Rights
- Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
- Language
- eng
- Full Text
- Reviewed
- Hits: 945
- Visitors: 1011
- Downloads: 73
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT02 | Publisher version (open access) | 1 MB | Adobe Acrobat PDF | View Details Download |